Unraveling Extra Dimensions

(And Why You Want To)

Grant Larsen

Department of Physics University of California, Berkeley

Physics Division
Lawrence Berkeley National Laboratory

November 2, 2011 / 290E

Outline

History

Old Lore: 1910's-1980's

Unification

Ed Witten Ruins Everything

(Super)String Theory

Modern Canon: 1990's-

Large Extra Dimensions

Warping

Duality with Technicolor

Universal Extra Dimensions

Phenomenology

Dark Matter Excited Modes Black Holes

Outline

History

Old Lore: 1910's-1980's
Unification
Ed Witten Ruins Everything
(Super)String Theory

ge Extra Dii

Duality with Technicolor
Universal Extra Dimensions

Phenomenology

The KK Idea: A Simple Picture

- ▶ (Due to Nordström, Kaluza, & Klein)
- Consider a 1-D problem, say, an ant crawling along a string.
- ► Even if all ants are given the same energy, some may traverse the length of the string at different rates, thus appearing to have different masses... Why?

The KK Idea: A Simple Picture

- (Due to Nordström, Kaluza, & Klein)
- Consider a 1-D problem, say, an ant crawling along a string.
- ► Even if all ants are given the same energy, some may traverse the length of the string at different rates, thus appearing to have different masses... Why?

The KK Idea: A Simple Picture

- (Due to Nordström, Kaluza, & Klein)
- Consider a 1-D problem, say, an ant crawling along a string.
- Even if all ants are given the same energy, some may traverse the length of the string at different rates, thus appearing to have different masses... Why?

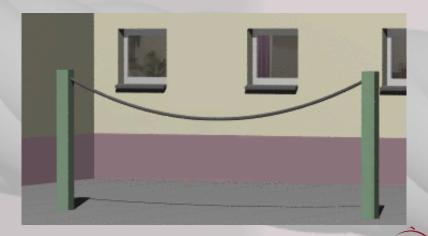


Figure: 1-D Problem.

BERKELEY LAB

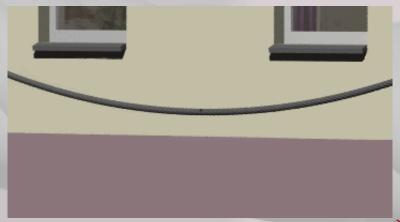


Figure: 1-D Problem...

Figure: 1-D Problem?

Figure: 2-D Problem?

rrrrrr

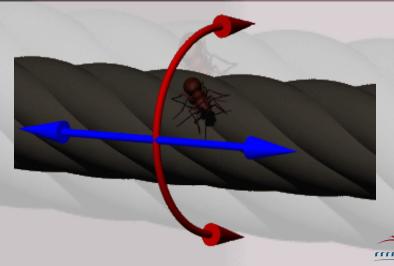


Figure: 2-D Problem.

physics@berkeley

- ▶ Now picture doing the same thing to a 2-D or 3-D problem.
- ▶ We can't
 - ▶ $S^1 \times \mathbb{R}^n$ is not emeddable in \mathbb{R}^3 for n > 1
 - Nontrivial fiber bundles (twisting)
- Our macroscopic intuitions v. mathematical consistency of a theory
- \Rightarrow Our first motivation for (microscopic) extra dimensions Why not?

- Now picture doing the same thing to a 2-D or 3-D problem.
- ▶ We can't.
 - ▶ $S^1 \times \mathbb{R}^n$ is not emeddable in \mathbb{R}^3 for n > 1
 - Nontrivial fiber bundles (twisting)
- Our macroscopic intuitions v. mathematical consistency of a theory
- \Rightarrow Our first motivation for (microscopic) extra dimensions Why not?

- ▶ Now picture doing the same thing to a 2-D or 3-D problem.
- We can't.
 - ▶ $S^1 \times \mathbb{R}^n$ is not emeddable in \mathbb{R}^3 for n > 1.
 - Nontrivial fiber bundles (twisting)
- Our macroscopic intuitions v. mathematical consistency of a theory
- \Rightarrow Our first motivation for (microscopic) extra dimensions Why not?

- Now picture doing the same thing to a 2-D or 3-D problem.
- We can't.
 - ▶ $S^1 \times \mathbb{R}^n$ is not emeddable in \mathbb{R}^3 for n > 1.
 - Nontrivial fiber bundles (twisting)
- Our macroscopic intuitions v. mathematical consistency of a theory
- \Rightarrow Our first motivation for (microscopic) extra dimensions Why not?

- Now picture doing the same thing to a 2-D or 3-D problem.
- We can't.
 - ▶ $S^1 \times \mathbb{R}^n$ is not emeddable in \mathbb{R}^3 for n > 1.
 - Nontrivial fiber bundles (twisting)
- Our macroscopic intuitions v. mathematical consistency of a theory
- ⇒ Our first motivation for (microscopic) extra dimensions:
 Why not?

Extra Dimensions in GR

The Real Fun

GSW, hep-th/9410046

- ▶ Kaluza: Consider a 5-D metric \mathfrak{g}_{MN} and define $\phi = -\frac{1}{\sqrt{3}}\log\mathfrak{g}_{44}$, $A_{\mu} = \frac{\mathfrak{g}_{4\mu}}{\mathfrak{g}_{44}}$, and $g_{\mu\nu} = \mathfrak{g}_{\mu\nu} \mathfrak{g}_{44}A_{\mu}A_{\nu}$.
- The 5-D generalization of the Einstein-Hilbert action is

$$S = rac{1}{2\mathfrak{K}^2} \int \mathfrak{R} \sqrt{|\mathfrak{g}|} d^5\mathfrak{x}$$

- ▶ If for some reason \mathfrak{g}_{MN} is independent of \mathfrak{x}^4 , then the equations of motion simplify dramatically and (after a bit of rescaling), we find
 - A^μ obeys Maxwell's equations,
 - lacktriangledown ϕ obeys the massless Klein-Gordon equation, and
 - $g_{\mu\nu}$ obeys the (4-D) Einstein equation.
- This is exciting E&M and 4-D GR seem to have emerged from 5-D GR...

Leads to Unification

...but it was hardly "natural" to assume one dimension just didn't matter.

- Recall our friend, the ant
- ▶ Klein: If the fifth dimension is compact (say, a small circle of radius R), the momentum in that direction is quantized: $\phi(\mathfrak{x}) = \sum_n \phi_n(x) e^{in\mathfrak{x}^4/R}$, and similarly for A^{μ} and $g_{\mu\nu}$.
- ▶ The n = 0 modes have no momentum in the 5th dimension, but the n > 0 modes have $\mathfrak{p}^4 = \frac{n}{R}$.
- If you're too big to know about the 5th dimension, $E^2 = p^2 + (p^4)^2$ looks a lot like $E^2 = p^2 + m^2$.
- \Rightarrow At energies $E \ll \frac{1}{R}$, we get 4-D GR and E&M, all from GR on $\mathbb{R}^{(3,1)} \times S^1$. (Unification!)

Leads to Unification

...but it was hardly "natural" to assume one dimension just didn't matter.

- Recall our friend, the ant.
- Klein: If the fifth dimension is compact (say, a small circle of radius R), the momentum in that direction is quantized: $\phi(\mathfrak{x}) = \sum_n \phi_n(x) e^{in\mathfrak{x}^4/R}$, and similarly for A^μ and $g_{\mu\nu}$.
- ► The n = 0 modes have no momentum in the 5th dimension but the n > 0 modes have $p^4 = \frac{n}{B}$.
- If you're too big to know about the 5th dimension $E^2 = p^2 + (p^4)^2$ looks a lot like $E^2 = p^2 + m^2$.
- \Rightarrow At energies $E\llrac{1}{R}$, we get 4-D GR and E&M, all GR on $\mathbb{R}^{(3,1)} imes S^1$. (**Unification**!)

Leads to Unification

...but it was hardly "natural" to assume one dimension just didn't matter.

- Recall our friend, the ant.
- ► Klein: If the fifth dimension is compact (say, a small circle of radius R), the momentum in that direction is quantized: $\phi(\mathfrak{x}) = \sum_n \phi_n(x) e^{in\mathfrak{x}^4/R}$, and similarly for A^{μ} and $g_{\mu\nu}$.
- ► The n = 0 modes have no momentum in the 5th dimension, but the n > 0 modes have $\mathfrak{p}^4 = \frac{n}{R}$.
- If you're too big to know about the 5th dimension, $E^2 = p^2 + (p^4)^2$ looks a lot like $E^2 = p^2 + m^2$.

 \Rightarrow At energies $E\ll rac{1}{R}$, we get 4-D GR and E&GR on $\mathbb{R}^{(3,1)} imes S^1$. (**Unification**!)

Leads to Unification

...but it was hardly "natural" to assume one dimension just didn't matter.

- Recall our friend, the ant.
- Klein: If the fifth dimension is compact (say, a small circle of radius R), the momentum in that direction is quantized: $\phi(\mathfrak{x}) = \sum_n \phi_n(x) e^{in\mathfrak{x}^4/R}$, and similarly for A^μ and $g_{\mu\nu}$.
- ► The n = 0 modes have no momentum in the 5th dimension, but the n > 0 modes have $\mathfrak{p}^4 = \frac{n}{B}$.
- If you're too big to know about the 5th dimension, $E^2 = p^2 + (p^4)^2$ looks a lot like $E^2 = p^2 + m^2$.
- \Rightarrow At energies $E\ll\frac{1}{R},$ we get 4-D GR and E&M, all from GR on $\mathbb{R}^{(3,1)}\times S^1.$ (Unification)

Leads to Unification

...but it was hardly "natural" to assume one dimension just didn't matter.

- Recall our friend, the ant.
- Klein: If the fifth dimension is compact (say, a small circle of radius R), the momentum in that direction is quantized: $\phi(\mathfrak{x}) = \sum_n \phi_n(x) e^{in\mathfrak{x}^4/R}$, and similarly for A^μ and $g_{\mu\nu}$.
- ► The n = 0 modes have no momentum in the 5th dimension, but the n > 0 modes have $\mathfrak{p}^4 = \frac{n}{B}$.
- If you're too big to know about the 5th dimension, $E^2 = p^2 + (p^4)^2$ looks a lot like $E^2 = p^2 + m^2$.
- \Rightarrow At energies $E\ll \frac{1}{R}$, we get 4-D GR and E&M, all from GR on $\mathbb{R}^{(3,1)}\times S^1$. (Unification!)

Nothing Good Lasts Forever...

- ▶ Where is the ϕ_0 ? Actually not as massless as we thought...
- Nature's more complicated than just E&M, but more dimensions can get bigger gauge groups.
- It's difficult to deal with fermions in some numbers of dimensions.
- In 1957, Wu, Ambler, Hayward, Hoppes, Hudson, Garwin, Lederman, and Weinrich ruined how pretty nature is and proved that the weak interaction (maximally) violates parity.
- In 1981, Witten proved that no way can KK generate our parity-violating gauge group.

Nothing Good Lasts Forever...

- ▶ Where is the ϕ_0 ? Actually not as massless as we thought...
- Nature's more complicated than just E&M, but more dimensions can get bigger gauge groups.
- It's difficult to deal with fermions in some numbers of dimensions.
- In 1957, Wu, Ambler, Hayward, Hoppes, Hudson, Garwin, Lederman, and Weinrich ruined how pretty nature is and proved that the weak interaction (maximally) violates parity.
- In 1981, Witten proved that no way can KK generate our parity-violating gauge group.

String Theory

- ► Naïvely, quantum gravity is non-renormalizable.
 - Most understood solution: string theory
 - Needs conformal symmetry
 - For conformal symmetry to be quantum-mechanically consistent, needs anomalies to cancel
 - Cancels iff D = 26 (bosonic strings only)

 ^(theory appears inconsistent)
 - ▶ Needs D = 10 for superstrings
- ⇒ Quantizing gravity consistently may require extra dimensions.

- Naturally described in terms of orbifolds, getting around Witten's theorem
- ...Unification...?

- Naturally described in terms of orbifolds, getting around Witten's theorem
- ► ...Unification...?

- Naturally described in terms of orbifolds, getting around Witten's theorem
- ...Unification...?
- ▶ Spacetime is an orbifold of $\mathbb{R}^{(3,1)} \times K^6$, where K^6 is something like

Figure: Calabi-Yau Manifolds

~ 10^{~500} ways of doing this...
 Along with anthropic reasoning...
 ⇒ solve fine-tuning problems...

- Naturally described in terms of orbifolds, getting around Witten's theorem
- ...Unification...?
- ▶ Spacetime is an orbifold of $\mathbb{R}^{(3,1)} \times K^6$, where K^6 is something like

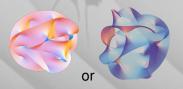


Figure: Calabi-Yau Manifolds

~ 10^{~500} ways of doing this...
 Along with anthropic reasoning...
 ⇒ solve fine-tuning problems...?

Outline

History

Modern Canon: 1990's-Large Extra Dimensions Warping Duality with Technicolor Universal Extra Dimensions

Phenomenology

(LED)

- hep-th/990522: Arkani-Hamed, Dimopoulos, & Dvali (ADD)
- ▶ In 4 + n dimensions, $V_g \sim \frac{m_1 m_2}{\mathfrak{M}_{pl}^{n+2} r^{n+1}}$.
- ▶ If extra dimensions compact, ^only true for $r \ll R$
- ▶ For $r \gg R$, get $V_g \sim \frac{m_1 m_2}{\mathfrak{M}_{Pl}^{n+2} R^n r}$
- Equating this with our well known $V_g \sim \frac{m_1 m_2}{M_{\rm Pl}^2 r}$, we must conclude that our measured $M_{\rm Pl} \sim \mathfrak{M}_{\rm Pl} \left(\frac{\mathfrak{M}_{\rm Pl}}{R}\right)^{n/2}$.
- "Solves" Hierarchy Problem
- lacksquare $V_g\simrac{1}{r}$ only tested down to \sim 1 mn

(LED)

- ▶ hep-th/990522: Arkani-Hamed, Dimopoulos, & Dvali (ADD)
- ▶ In 4 + n dimensions, $V_g \sim \frac{m_1 m_2}{\mathfrak{M}_{pl}^{n+2} r^{n+1}}$.
- ▶ If extra dimensions compact, ^only true for $r \ll R$
- ▶ For $r \gg R$, get $V_g \sim \frac{m_1 m_2}{\mathfrak{M}_{Pl}^{n+2} R^n r}$
- Equating this with our well known $V_g \sim \frac{m_1 m_2}{M_{\rm Pl}^2 r}$, we must conclude that our measured $M_{\rm Pl} \sim \mathfrak{M}_{\rm Pl} \left(\frac{\mathfrak{M}_{\rm Pl}}{R}\right)^{n/2}$.
- "Solves" Hierarchy Problem!
- lacksquare $V_g\simrac{1}{r}$ only tested down to \sim 1 mm

(LED)

- ▶ hep-th/990522: Arkani-Hamed, Dimopoulos, & Dvali (ADD)
- ▶ In 4 + n dimensions, $V_g \sim \frac{m_1 m_2}{\mathfrak{M}_{pl}^{n+2} r^{n+1}}$.
- ▶ If extra dimensions compact, ^only true for $r \ll R$
- ▶ For $r \gg R$, get $V_g \sim \frac{m_1 m_2}{\mathfrak{M}_{Pl}^{n+2} R^n r}$
- Equating this with our well known $V_g \sim \frac{m_1 m_2}{M_{\rm Pl}^2}$, we must conclude that our measured $M_{\rm Pl} \sim \mathfrak{M}_{\rm Pl} \left(\frac{\mathfrak{M}_{\rm Pl}}{R}\right)^{n/2}$.
- "Solves" Hierarchy Problem!
- $V_g \sim \frac{1}{r}$ only tested down to \sim 1 mm...

Problems

- ▶ I can see 1 mm! Things look 3 + 1-dimensional
 - Demand SM stuck in a 4-D subspace of spacetime (membrane) but gravity propagates in bulk
- ▶ Since 1998: much more stringent tests on $V_g \sim \frac{1}{r}$
- ► $R\mathfrak{M}_{Pl} = \left(\frac{M_{Pl}}{\mathfrak{M}_{Pl}}\right)^{2/n}$ still a hierarchy!
- Ruins protection of SM as an effective theory from higher-dimensional operators

Warping

Compact

- hep-ph/9905221: Randall & Sundrum (RS1)
- Suppose 5-D spacetime is (exponentially) warped, i.e. $d\mathfrak{s}^2 = e^{-2k\mathfrak{x}^4}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + (d\mathfrak{x}^4)^2$.
- If x⁴ is compact and of small size R, for a particle living on a brane at the warped end, the low-energy effective actionfor a scalar (for instance) is:

$$egin{aligned} \mathcal{S}_{\mathsf{4D}} \supset & \int \left(g^{\mu
u} D_{\mu} \phi^{\dagger} D_{
u} \phi - \mathfrak{m}^2 \left| \phi
ight|^2
ight) \sqrt{\left| g
ight|} d^4 x \ & = \int \left(e^{2\pi Rk} \mathfrak{g}^{\mu
u} D_{\mu} \phi^{\dagger} D_{
u} \phi - \mathfrak{m}^2 \left| \phi
ight|^2
ight) e^{-4\pi Rk} \sqrt{\left| \mathfrak{g}
ight|} d^4 x. \end{aligned}$$

Canonical (re)normalization:

$$S_{ ext{4D}} \supset \int \left(\mathfrak{g}^{\mu
u} D_{\mu} \phi^{\dagger} D_{
u} \phi - e^{-2\pi R k} \mathfrak{m}^2 \left| \phi
ight|^2
ight) \sqrt{\left| \mathfrak{g}
ight|} extbf{d}^4 x$$

Warping

Compact

- hep-ph/9905221: Randall & Sundrum (RS1)
- Suppose 5-D spacetime is (exponentially) warped, i.e. $d\mathfrak{s}^2 = e^{-2k\mathfrak{x}^4}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + (d\mathfrak{x}^4)^2$.
- If x⁴ is compact and of small size R, for a particle living on a brane at the warped end, the low-energy effective actionfor a scalar (for instance) is:

$$egin{aligned} S_{\mathsf{4D}} \supset & \int \left(g^{\mu
u} D_{\mu} \phi^{\dagger} D_{
u} \phi - \mathfrak{m}^2 \left| \phi
ight|^2
ight) \sqrt{|g|} d^4 x \ & = \int \left(e^{2\pi R k} \mathfrak{g}^{\mu
u} D_{\mu} \phi^{\dagger} D_{
u} \phi - \mathfrak{m}^2 \left| \phi
ight|^2
ight) e^{-4\pi R k} \sqrt{|\mathfrak{g}|} d^4 x. \end{aligned}$$

Canonical (re)normalizaion:

$$S_{ ext{4D}} \supset \int \left(\mathfrak{g}^{\mu
u} D_{\mu} \phi^{\dagger} D_{
u} \phi - e^{-2\pi R k} \mathfrak{m}^2 \left| \phi
ight|^2
ight) \sqrt{\left| \mathfrak{g}
ight|} extbf{d}^4 x$$

Warping

Non-Compact

- ▶ hep-ph/9906064: Randall & Sundrum (RS2)
- ▶ Take RS1, put us on the other brane, and take $R \to \infty$ limit
- Potential seen by graviton binds creates bound state at our brane
- Continuum of KK modes
- ightharpoonup Coupling to massive KK modes supressed by $rac{p}{k}$
- $V_g = G_N \frac{m_1 m_2}{r} \left(1 + \frac{1}{k^2 r^2} \right).$
- Energy loss to bulk small
- Cures a "moduli problem" of string theory: runaway is OK

Duality and Strong Dynamics

AdS/CFT → Technicolor

hep-th/0012148

- Warped spacetimes are (slices of) anti de Sitter (AdS) spaces, having (-) curvature.
- hep-th/9711200: Maldacena duality
 - ▶ Quantum gravity on $AdS_{D+1} \leftrightarrow Large \ N$ Conformal Gauge Field Theory in D-dimensional spacetime (AdS/CFT)
- $ightharpoonup \mathfrak{x}^4 \leftrightarrow \mathsf{RG} \; \mathsf{scale}$
- ▶ Planck brane ↔ UV cutoff
- ▶ RS2: Localization of graviton ↔ 4D gravity
- ► RS1: TeV brane ↔ breakdown of conformality in IR
- ► RS1: SM gauge bosons ↔ bound states of broken CFT
- ► localizing a Higgs on TeV brane ↔ bound sta broken CFT breaks EW (a.k.a. Technicolor)

Duality and Strong Dynamics

AdS/CFT ---> Technicolor

hep-th/0012148

- Warped spacetimes are (slices of) anti de Sitter (AdS) spaces, having (-) curvature.
- hep-th/9711200: Maldacena duality
 - ▶ Quantum gravity on $AdS_{D+1} \leftrightarrow Large \ N$ Conformal Gauge Field Theory in D-dimensional spacetime (AdS/CFT)
- $\mathfrak{x}^4 \leftrightarrow \mathsf{RG} \; \mathsf{scale}$
- ▶ Planck brane ↔ UV cutoff
- ▶ RS2: Localization of graviton ↔ 4D gravity
- ▶ RS1: TeV brane ↔ breakdown of conformality in IR
- ► RS1: SM gauge bosons ↔ bound states of broken CFT
- ► localizing a Higgs on TeV brane

 → bound state of broken CFT breaks EW (a.k.a. Technicolor)

Universal Extra Dimensions

(UED)

- ► hep-ph/0012100:Applequist, H.-C. Cheng, & Dobrescu
- Allow everything to propagate in all 5-D
- Stronger constraits than LED on size:
 - EWPT
 - a_μ
 - ► FCNC's
- ► KK parity: Conservation of p⁴ ⇒ KK-modes annihilated/produced in pairs (or more)

Outline

History

Warping
Duality with Technicolor
Universal Extra Dimension

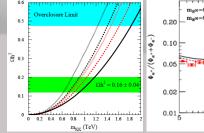
Phenomenology

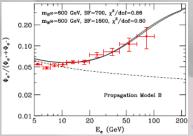
Dark Matter Excited Modes Black Holes

KK Parity

Dark Matter

- ▶ hep-ph/0204342: H.-C. Cheng, Matchev, & Schmaltz
- ► KK parity ⇒ stable particles, possibly weak(ish)-scale, some without E&M/strong interactions
 - ⇒ Lightest KK particle (LKP) therefore potential dark matter (DM)
- ► Either KK γ or KK ν as LKP undergoing thermal freeze-out (FO) can get $\Omega_M \sim$ 0.3. (Servant & Tait '02); also viable PAMELA explanation (Hooper & Zurek '09)





Other Consquences of KK Modes

- Possible new TeV-scale particles
- Non-compact extra dimensions ⇒ possible missing momentum into bulk
- Could affect many SM processes at loop level (infinite towers)
 - ^(typically collider bounds stronger)

Black Holes

- ▶ In LED, fundamental scale is $\mathcal{O}(10 \text{ TeV})$.
- Collisions at this scale should form black holes!
- Short-lived due to rapid Hawking radiation
- Spectacular signal: isotropic (in rest frame), "democratic" decay
- Should be visible in (rare) high-energy cosmic rays

Motivation

In Summary

- Why not?
- Unification
- Quantizing gravity
- Justify fine tuning
- Solve Hierarchy Problem
- Natural dark matter candidates
- Equivalent to strong dynamics that may EW
- Dark matter
- Spectacular signals

